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Collective behaviors

In nature, when big groups of individuals jointly operate, exhibit auto-organized
behaviors (e.g. flocking, synchronization and consensus).
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Multiagent system (MAS)

MAS, consists on a group of dynamic subsystems, called agents, interacting with
each other on local neighborhoods through communication links and/or local sensing,
sharing their local state, and using the collected information to update it’s state
according to a distributed controller*.

*K. Sakurama, S. Azuma and T. Sugie, “Distributed Controllers for Multi-Agent Coordination Via Gradient-Flock Approach”,
IEEE Trans. on Auto. Control, 2015.
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Consensus on MAS

The group of agents reach an agreement on their local variables. The final common
value is called a consensus state*.

*R. Olfati-Saber and R.M. Murray, “Consensus Problems in Networks of Agents with Switching Topology and Time-Delays”,
IEEE Trans. on Auto. Control, 2004.
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Agent’s dynamics

Consider a group of N inertial agents with dynamics

ṗi = vi , mi v̇i = ui , i = 1, · · · ,N, (1)

where pi ,vi ,ui ∈ Rn and mi ∈ R>0. Also, suppose all agents have the same
sensing/communication radio r ∈ R>0.

Proximity graph

Is a graph G(t) = (V ,E(t)) consisting of a nodes set V = {1, · · · ,N} and a position
dependent time varying set of edges E(t) =

{
(i, j)|i, j ∈ V

}
.

Rn states for the n-dimensional real vector set, R>0 for all positive real values.
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Control objectives: Connectivity preservation

When network links depends on relative positions, a common pitfall is the
fragmentation phenomenon*.

*R. Olfati-Saber “Flocking for multi-agent dynamic systems: Algorithms and theory ”, IEEE Trans. on Auto. Control, Vol. 51,
2006.
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Control objectives: Leader following

Consider the desired common value is defined by a virtual leader’s dynamics is

ṗl = vl , v̇l = f (pl ,vl , t) , (2)

where pl ,vl ∈ Rn and f : Rn×Rn×R≥0 7→ Rn is a continuous Lipschitz function.

Leader-followers consensus problem

A leader-followers consensus is achieved if, for any admissible initial conditions,

lim
t→∞
‖pi −pl‖= 0 and lim

t→∞
‖vi − vl‖= 0, i = 1, · · · ,N (3)
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Distributed controller for constant velocity leader

Assumption

The virtual leader moves at a constant velocity, i.e. f (pl ,vl , t)≡ 0 in (2).

Consider the following distributed controller

ui =− ∑
j∈Ni

∇pi ψ (‖pij‖)− ∑
j∈Ni

aij (vi − vj )−hi ((pi −pl ) + (vi − vl )) , (4)

where

∇pi ψ (‖pij‖) is an Artificial potential function (APF) gradient respect to pi ;

aij is the ij-th element of adjacency matrix A(G(t));

Ni =
{

j ∈ V |(i, j) ∈ E(t)
}

is the neighbors set of agent i ;

hi ∈ R>0 if agent i receives information from the leader and hi = 0 otherwise.

‖·‖ is the Euclidean norm and pij = pi −pj .
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Artificial potential function (APF)

Consider a nonnegative potential function such that depends on relative distances
between agents ‖pij‖, differentiable for ‖pij‖ ∈ [0, r ] and satisfying

(i) ψ (‖pij‖)→ ψ̄ as ‖pij‖→ r ;

(ii) ∂ψ(‖pij‖)
∂‖pij‖ > 0 for ‖pij‖ ∈ (0, r);

(iii) lim
‖pij‖→0

(
∂ψ(‖pij‖)

∂‖pij‖
1
‖pij‖

)
is nonnegative and bounded.

An example*:

ψ(‖pij‖) =
ψ̄‖pij‖2

ψ̄(r −‖pij‖) +‖pij‖2

*H. Su, X. Wang and G. Chen “Rendezvous of Multiple Mobile Agents with Preserved Network Connectivity ”, Sys. Control
Lett, Vol. 59, 2010.
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Dynamic set of links: An hysteresis process

The set E(t) evolves accordingly to the following process:

1 initial links are E(t0) = {(i, j)|‖pij (t0)‖< r − ε}, for every i, j ∈ V ;

2 if link (i, j) /∈ E(t−) and ‖pij‖< r − ε, then (i, j) ∈ E(t) and;

3 if ‖pij‖ ≥ r , then (i, j) /∈ E(t).

where ε ∈ (0, r) and t− is the instant before t .

M. Ji and M. Egerstedt, “Distributed Coordination Control of Multiagent Systems While Preserving Connectedness ”, IEEE
Trans. Robot., Vol. 23, 2007.
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Result for leader with constant velocity: f (pl ,vl , t)≡ 0

Theorem 1

Consider a system of N inertial agents with model (1) applying controller (4) and a
virtual leader with dynamics (2) with f (pl ,vl , t)≡ 0. Suppose the initial proximity
graph G(0) is connected, and the initial error conditions p̃(0), ṽ(0) ∈Ω0*, then the
following results hold:

(i) G(t) remains connected all time t ≥ 0,

(ii) all agents asymptotically converge to leader’s position and velocity.

Proof sketch†

(i) Define a function V(p̃, ṽ)≤ V̄(p̃(0), ṽ(0)) < ψ̄ with time derivative V̇(ṽ)≤ 0.

(ii) Using LaSalle’s invariance principle, a set such that V(p̃, ṽ)≤ V̄(p̃(0), ṽ(0)) is
positively invariant with V̇(ṽ) = 0 iff vi = vl for all i ∈ V .

(iii) From controller (4) and APF’s definition, position consensus pi = pl is proved.

*Ω0 =
{

p̃(0) ∈ RNn , ṽ(0) ∈ RNn : V̄(p̃(0), ṽ(0)) < ψ̄
}

, where p̃ = [p̃T
1 , · · · , p̃

T
N ]T and ṽ = [ṽT

1 , · · · , ṽT
N ]T , with

p̃i = pi −pl and ṽi = vi − vl .
†A more general description is available for discussion at the end of presentation.
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Example: Leader with constant velocity
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Distributed controller for leader with time-varying velocity

Assumption

Leader’s and agent’s accelerations can be communicated or calculated through local
sensing*.

Consider the following distributed controller

ui =− 1
ηi

∑
j∈Ni

∇pi ψ (‖pij‖)−
1
ηi

∑
j∈Ni

aij (vi − vj ) +
1
ηi

∑
j∈Ni

aij v̇j

− hi

ηi
((pi −pl ) + (vi − vl )− v̇l ) , (5)

where ηi = 1
mi

(
hi + ∑j∈Ni

aij

)
, which for connected networks is always positive.

*W. Ren and R.W. Beard “Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications”,
Springer-verlag, 2008.
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Result for leader with time-varying velocity

Theorem 2

Consider a system of N inertial agents with model (1) applying controller (5) and a
virtual leader with dynamics (2). Suppose the initial proximity graph G(0) is
connected, and the initial error conditions p̃(0), ṽ(0) ∈Ω0*, then the following results
hold:

(i) G(t) remains connected all the time t ≥ 0,

(ii) all agents asymptotically converge to leader’s position and velocity.

Proof sketch†

(i) Define a function W (p̃, ṽ)≤ W̄ (p̃(0), ṽ(0)) < ψ̄ with time derivative Ẇ (ṽ)≤ 0.

(ii) This proof follows the same steps has Theorem’s 1 proof.

*Ω0 =
{

p̃(0) ∈ RNn , ṽ(0) ∈ RNn : W̄(p̃(0), ṽ(0)) < ψ̄
}

†A more general description is available for discussion at the end of presentation.
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Example: Leader with time-varying velocity
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Final comments

Summary

Leader-followers consensus problem over proximity graphs is investigated.

Two fully distributed controllers were developed; The first, considering the leader
moves at a constant velocity; The second, for time-varying leader’s velocity.

This results extends the work made by Su et. al. 2010*, where leader-followers
consensus is also investigated (just for leader’s velocity), and all agents have
access to leader’s acceleration.

Future work

Collective behaviors problems on MAS with different sensing radio for each
agents while avoid collisions with environmental obstacles.

Implement distributed controllers in groups of mobile robots (for consensus and
flocking).

*H. Su, X. Wang and G. Chen “Rendezvous of multiple mobile agents with preserved network connectivity ”, Syst. Control
Lett., Vol. 59, 2010.
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Some graph theory

Adjacency matrix A (G(t)) ∈ RN×N :

aij =

{
aij ∈ R>0, if (i, j) ∈ E(t),
0, otherwise,

with diagonal elements aii = 0.

Laplacian matrix L (G(t)) ∈ RN×N :

lij =

{
lij =−aij , if (i, j) ∈ E(t),
0, otherwise,

with diagonal elements lii = ∑j=1,j 6=i aij .

A graph G(t) is connected if there exists a path (a sequence of edges (i, j) ∈ E(t))
connecting every pair of nodes. Additionally, it’s Laplacian satisfies*

zT (L⊗ In)z =
1
2 ∑

(i,j)∈E(t)

aij ‖zi − zj‖2 , (6)

where z =
[
zT

1 , · · · ,zT
N

]T ∈ RnN with zi ∈ Rn, In is the n-dimensional identity matrix
and ⊗ is the Kronecker product.

*R. Olfati-Saber “Flocking for multi-agent dynamic systems: Algorithms and theory ”, IEEE Trans. on Auto. Control, Vol. 51,
2006.
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Theorem 1: Candidate function

Let p̃i = pi −pl and ṽi = vi − vl be state errors, and define the following function

V(t) =
1
2

N

∑
i=1

(
∑

j∈Ni

ψ (‖p̃ij‖) + hi p̃
T
i p̃ + mi ṽ

T
i ṽi

)
; (7)

The initial energy of the complete system V0 = (p(0),v(0)) is bounded, since

V0 ≤
1
2

N

∑
i=1

(
mi ṽ

T
i (0)ṽi (0) + hi p̃

T
i (0)p̃i (0)

)
+

N(N−1)

2
ψ (r − ε) = V̄ (8)

Also, define the set Ω0 =
{

p̃(0), ṽ(0) ∈ RnN : V̄ < ψ̄
}

. Notice, error dynamics is

˙̃pi = ṽi , mi ˙̃vi = ui , i = 1, . . . ,N, (9)

where ui can be rewritten on errors terms

ui =− ∑
j∈Ni

∇p̃i
ψ (‖p̃ij‖)− ∑

j∈Ni

aij (ṽi − ṽj )−hi (p̃i + ṽi ) (10)
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Proof sketch: Connectivity preservation

Assume network switches on instants tk with k = 1,2, . . . and remains fixed over
interval [tk−1, tk ). Taking time derivative of (7) yields

V̇(t) =
N

∑
i=1

(
1
2 ∑

j∈Ni

ψ̇(‖p̃ij‖) + hi ˙̃pT
i p̃i + mi ṽ

T
i

˙̃vi

)
=−ṽT (LH ⊗ In) ṽ ≤ 0 (11)

where LH = L + H with H = diag(h1, . . . ,hN). Equation (11), implies that

(i) since p̃(0), ṽ(0) ∈Ω0, then V(t)≤ V̄ < ψ̄ for t ∈ [t0, t1), thus no distance
‖pij‖→ r . Then, on t1 some edges are added to G(t);

(ii) Assume there are 0 < q1 ≤ (N−1)(N−2)
2 new edges on t1, thus

V(t1)≤ V0 + q1ψ (r − ε)≤ V̄ < ψ̄;

(iii) Applying recursively the aforementioned analysis, we conclude that G(t)
remains connected for all t ≥ 0.
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Proof sketch: Consensus with leader (Velocity)

From the aforementioned analysis notice:

Number of new edges is finite 0 < qk ≤ (N−1)(N−2)
2 , thus G(t) gets fixed;

The set Ω =
{

ˆ̃p ∈ DG , ṽ ∈ RnN : V(ˆ̃p, ṽ)≤ V̄
}

is positively invariant, where

DG =
{

ˆ̃p ∈ RnN2
: ‖p̃ij‖ ∈

[
0,ψ−1(V̄)

]
,∀(i, j) ∈ E(t)

}
*;

From LaSalle’s invariance principle, all trajectories converge to

S =
{

ˆ̃p ∈ DG , ṽ ∈ RnN : V̇ = 0
}

;

From (11), notice that V̇(t) =−ṽT (L⊗ In) ṽ− ṽT (H ⊗ In) ṽ = 0, implying
ṽ1 = . . . = ṽN and ṽi = 0 for any i such that hi > 0, i.e. v1 = . . . = vN = vl ;

*with ˆ̃p =
[
p̃T

11, . . . , p̃
T
1N , . . . , p̃T

N1 , . . . , p̃
T
NN
]T
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Proof sketch: Consensus with leader (Position)

In steady state ˙̃vi = 0, thus from controller (4) we have

ui =− ∑
j∈Ni

∂ψ (‖p̃ij‖)
∂‖p̃ij‖

p̃i − p̃j

‖p̃ij‖
−hi p̃i = 0n (12)

rewriting the last equation in a matrix form for all agents and multiplying by p̃T

−p̃T
(

L̂⊗ In
)

p̃− p̃T (H ⊗ In) p̃ = 0 (13)

where

L̂ii =
N

∑
j=1,j 6=i

(
∂ψ (‖p̃ij‖)

∂‖p̃ij‖
1
‖p̃ij‖

)
and L̂ij =−

∂ψ (‖p̃ij‖)
∂‖p̃ij‖

1
‖p̃ij‖

for i 6= j,

which implies that p̃1 = . . . = p̃N and p̃i = 0 for any i such that hi > 0, i.e.
p1 = . . . = pN = pl .
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Theorem 2: Candidate function

Define the next function

W (t) =
1
2

N

∑
i=1

(
∑

j∈Ni

ψ (‖p̃ij‖) + hi p̃
T
i p̃i

)
+

1
2

ṽT (LH ⊗ In) ṽ (14)

The initial energy of the complete system W0 = W (p̃(0), ṽ(0)) is bounded on the
next way

W0 ≤
N(N−1)

2
ψ (r − ε) +

1
2

N

∑
i=1

hi p̃
T
i (0)p̃i (0) +

1
2

ṽT (0)(LH ⊗ In) ṽ(0) = W̄

Also, define the initial conditions set Ω0 =
{

p̃(0), ṽ(0) ∈ RnN : W̄ < ψ̄
}

. The error
dynamics is

˙̃pi = ṽi , mi ˙̃vi = ui −mi v̇l , i = 1, . . . ,N. (15)

Controller (5) can be rewritten in therms of error states like

ui =− 1
ηi

∑
j∈Ni

∇p̃i
ψ (‖p̃ij‖)−

1
ηi

∑
j∈Ni

aij (ṽi − ṽj ) +
1
ηi

∑
j∈Ni

aij v̇j −
hi

ηi
(p̃i + ṽi − v̇l ) .

(16)
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After some manipulations, error dynamics (15) with controller (16), results on

˙̃pi =ṽi ,

∑
j∈Ni

aij ( ˙̃vi − ˙̃vj ) + hi ˙̃vi =− ∑
j∈Ni

∇p̃i
ψ (‖p̃ij‖)−hi p̃i − ∑

j∈Ni

aij (ṽi − ṽj )−hi ṽi .

Rewriting last equation on a more compact form we have

˙̃p = ṽ ,

(LH ⊗ In) ˙̃v =−
(

L̂H ⊗ In
)

p̃− (LH ⊗ In) ṽ . (17)

Since

Ẇ (t) =
1
2

N

∑
i=1

∑
j∈Ni

ψ̇(‖p̃ij‖) +
N

∑
i=1

hi ˙̃pT
i p̃i + ṽT (LH ⊗ In) ˙̃v =−ṽT (LH ⊗ In) ṽ ≤ 0,

(18)
this theorem can be proved following the sames steps as in theorem 1.
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